SphinX: The Solar Photometer in X-Rays. Solar Physics, Volume 283, Issue 2, 2013, Pages 631-649

14 сентября 2018
Предметная область
Выходные данные
Ключевые слова
Вид публикации Статья
Контактные данные автора публикации Gburek, S.a , Sylwester, J.a, Kowalinski, M.a, Bakala, J.a, Kordylewski, Z.a, Podgorski, P.a, Plocieniak, S.a, Siarkowski, M.a, Sylwester, B.a, Trzebinski, W.a, Kuzin, S.V.b, Pertsov, A.A.b, Kotov, Y.D.c, Farnik, F.d
Ссылка на публикацию в интернете www.scopus.com/record/display.url?origin=recordpage&eid=2-s2.0-84874954863&citeCnt=3&noHighlight=false&sort=plf-f&src=s&st1=MEPhI&nlo=&nlr=&nls=&sid=F0743CC1BB1CEC168410A18CB87C48A7.Vdktg6RVtMfaQJ4pNTCQ:6500&sot=b&sdt=b&sl=31&s=AFFIL(MEPhI) AND PU


Solar Photometer in X-rays (SphinX) was a spectrophotometer developed to observe the Sun in soft X-rays. The instrument observed in the energy range ≈ 1 - 15 keV with resolution ≈ 0. 4 keV. SphinX was flown on the Russian CORONAS-PHOTON satellite placed inside the TESIS EUV and X telescope assembly. The spacecraft launch took place on 30 January 2009 at 13:30 UT at the Plesetsk Cosmodrome in Russia. The SphinX experiment mission began a couple of weeks later on 20 February 2009 when the first telemetry dumps were received. The mission ended nine months later on 29 November 2009 when data transmission was terminated. SphinX provided an excellent set of observations during very low solar activity. This was indeed the period in which solar activity dropped to the lowest level observed in X-rays ever. The SphinX instrument design, construction, and operation principle are described. Information on SphinX data repositories, dissemination methods, format, and calibration is given together with general recommendations for data users. Scientific research areas in which SphinX data find application are reviewed. © 2012 Springer Science Business Media Dordrecht.


Author keywords

Solar corona; Solar instrumentation; X-rays
Для того чтобы оставить комментарий необходимо авторизоваться.